Graphon based Clustering and Testing of Networks: Algorithms and Theory

Problem Setting: Graph Clustering

Cluster *m* graphs G_1, \ldots, G_m of *different sizes* into *K* groups

Graphon based Graph Distance

Graphon: Random graph model $w : [0,1]^2 \rightarrow [0,1]$ Sample graph G with n nodes: $U_1, \ldots, U_n \sim Uniform[0,1]$ $G_{ij} | U_i, U_j \sim Bernoulli(w(U_i, U_j))$ for all i < jw(u, v) = uvВ $\mathbb{P}[G_{AB}] = 0.9 imes 0.4$ 0.9 A A $\mathbb{P}[G_{BC}] = 0.4 imes 0.1$ с 0.1 $\mathbb{P}[G_{AC}] = 0.9 imes 0.1$ С

Graph transformation to fixed size representation $n_0 \times n_0$, $n_0 \ll$ #nodes

Proposed graph distance: $d(G_i, G_j) = \frac{1}{n_0} ||A_i - A_j||_F$

Graph distance is consistent. $G_1 \sim w_1$ and $G_2 \sim w_2$ then w.h.p. $d(G_1, G_2) = \|w_1 - w_2\|_{L_2} + O\left(\frac{1}{n_2}\right)$ for large graphs.

Graph Clustering Algorithms

Distance based Spectral Clustering (DSC)

• Use *K* smallest eigenvectors (in magnitude) of distance matrix $\widehat{D} \in \mathbb{R}^{m \times m}$ where $\widehat{D}_{ii} = d(G_i, G_i)$ to get *K* clusters

Similarity based Semi-definite Programming (SSDP)

- Similarity matrix $\widehat{S} \in \mathbb{R}^{m \times m}$ where $\widehat{S}_{ij} = \exp\left(-\frac{d(G_i, G_j)}{\sigma_i \sigma_j}\right)$
- SDP: $\widehat{X} = \max_{V} \operatorname{trace}(\widehat{S}X) \text{ s.t. } X \ge 0, X \ge 0, X1 = 1, \operatorname{tr}(X) = K$
- Use *K* largest eigenvectors of \widehat{X} to get *K* clusters

Consistency of DSC.

• K = 2 clusters

Equal number of large graphs generated from w_1 and w_2 . Then the **number of misclustered graphs** $\rightarrow 0$ w.h.p. when $||w_1 - w_2||_{L_2} \ge C \frac{m}{n_0}.$

• K > 2 clusters

Large graphs $G_i \sim w_i$ then the **number of misclustered graphs** depends on m, n_0 and K-th smallest eigenvalue of *ideal* distance matrix in magnitude.

Consistency of SSDP.

• $K \ge 2$ clusters

Large graphs $G_i \sim w_i$ and $\min_{l \neq l'} \|w_l - w_{l'}\|_{L_2} = \Omega\left(\frac{m}{n_0}\right) \text{ then}$

the **number of misclustered graphs is** 0 w.h.p.

Consistency results \rightarrow DSC and SSDP recover the clusters exactly when the underlying graphons are well separated.

Parameter free DSC and SSDP: from the consistency results

fix
$$n_0 = \mathcal{O}\left(\sqrt{\frac{n}{\log n}}\right)$$

Empirical Performance

Compared with different embedding based, kernel based and neural network based methods.

Two-sample Testing

Given graphs $G_1 \sim w_1$ and $G_2 \sim w_2$ Null Hypothesis $H_0: \{w_1 = w_2\}$ Alternate Hypothesis H_a : { $w_1 \neq w_2$: $||w_1 - w_2||_{L_2} \ge \phi$ } for some $\phi > 0$ $T: \left\{ d(G_1, G_2) \ge \xi \right\} \text{ for some } \xi > 0$ Test <u>Cons</u>

 $W_1(u, v) = uv$ $W_2(u, v) = \exp\{-\max(u, v)^{0.75}\}$ $W_4(u, v) = |u - v|$

 $W_3(u, v) = \exp\left\{-0.5(\min(u, v) + u^{0.5} + v^{0.5})\right\}$

