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An illustrative toy example

Top Hessian eigenvectors 
encode the decision

boundary

A complex boundary is 
characterized by many

eigenvectors
☞ new generalization measure

Simplicity bias
and estimation of the margin width

Take a look
at the paper!

Across deep learning setups, the Hessian of the training loss at the minimum exhibits some universal characteristics: its
spectrum has few outliers, and the gradient information resides in the corresponding small subspace. What is encoded by the
top eigenvectors of the loss Hessian?

We measure the cosine similarity (alignment) between the loss gradient of the individual input data and the eigenvectors of
the loss Hessian at the minimum for various classification datasets and neural networks.

Ø The top eigenvectors of the training loss Hessian encode the decision boundary learned by the neural network.
Particularly, each eigenvector encodes a separate section of the decision boundary.

Ø The number of encoding eigenvectors usually equals the number of spectrum outliers (and the number of classes). However,
more eigenvectors are needed to encode a complex, highly non-linear decision boundary.

Ø We propose a new, improved generalization measure that considers the simplicity of the decision boundary via the
Hessian eigenvectors. In addition, we develop a technique to estimate the narrowest margin of the decision boundary in
the input space.

Motivation

What did we do

Contributions

(A) The 1D toy dataset with 5 input points and 2 classes {pink, cyan}.

(B) A model 𝑓! with parameters 𝜃 takes an input 𝑥 and returns logit
probabilities for each class.

(C.1) Predictions of 𝑓! across the input space with $𝜃 being a specific set of
parameters that correctly classify the training data.

(C.2) There are two outliers in the Hessian eigenspectrum of the training loss
calculated at the minimum $𝜃 . They correspond to the eigenvectors 𝑣"and
𝑣# that are directions in the parameter space shown in (C.4). When measuring
their cosine similarity with gradients of the loss of individual points from the
input (C.3), we obtain the alignment in (C.5).

Each outlier encodes one section of the decision boundary of the model
𝒇𝜽 relevant to the data that induced the loss landscape.

It is NOT accidental! Compare to the
alignment with…

… bottom
Hessian
eigenvectors

… random
Hessian
eigenvectors

… random
vectors

Absolute alignment between the topmost eigenvectors and the points on the 
decision boundary is close-to-one 

each top eigenvector captures only a section of the boundary

the alignment does not necessarily switch between extreme values +1 and −1 
across the decision boundary. The exact alignment values do not seem
informative?

more eigenvectors are needed
to describe complex decision
boundary

Alignment of gradients of loss of all training data 
with the top 25 Hessian eigenvectors for gaussian

Alignment of gradients of loss of input data with the top 5 Hessian eigenvectors at the minimum

Alignment of gradients of loss of input data with the top 9 Hessian eigenvectors at the minimum

the generalization measure cannot detect a poorer generalization
caused by the simplicity bias!

however, the order of top eigenvectors follows the increasing margin 
of the sections of the boundary that they encode

☞ Margin estimation of various sections of the decision boundary
using the corresponding Hessian eigenvector!

a training sample 𝑥% that is closest to the 
boundary: it is chosen to have the largest 
alignment with the top Hessian eigenvector 𝑣"

a sample on the boundary 𝑥& , close to 𝑥% : 
we optimize the features of an input sample 
such that its gradient has a maximum 
alignment with the top Hessian eigenvector 𝑣"

We need two input points for estimating the narrowest margin:

Better generalizing model → smaller generalization measure
(simpler decision boundary) + larger margin
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Results here are for SGD + cross-entropy loss
training, but they are invariant to the optimizer
(e.g., Adam) and loss function (e.g., NLL loss).

number of spectrum outliers
depends on the decision
boundary complexity (not only
the number of classes)

We propose a generalization measure detecting
the complexity of the decision boundary

Ratio of the Hessian eigenvectors having on 
average non-zero* alignment with the training
data. 
Smaller the ratio, the simpler boundary, 
the better generalizing model.
* a larger alignment than a random direction

• our measure correctly identified well-
generalizing models across all datasets and 
networks (including Iris, MNIST, CIFAR-10)

• It is also invariant to reparametrization!

During
training…

The top Hessian eigenvectors
encode the decision boundary
also during training!

classification problem overparametrized neural network

Hessian of the 
training loss
function computed
at the minimum
with eigenvalues
and eigenvectors:

Alignment between the i-th Hessian
eigenvector and the logit gradient:
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