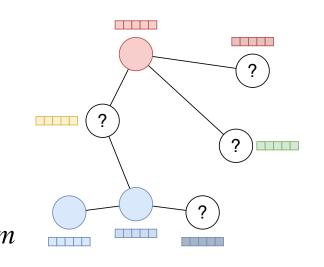
Analysis of Convolutions, Non-linearity and Depth in Graph Neural Networks using Neural Tangent Kernel

Graph G with n nodes Adjacency matrix $A \in \mathbb{R}^{n \times n}$ $D \in \mathbb{R}^{n \times n}$ Degree matrix Feature matrix $X \in \mathbb{R}^{n \times f}$ *m* node labels $Y \in \{1, \dots, K\}^m$

TRANSACTIONS

RESEAR



Intriguing Empirical Observations

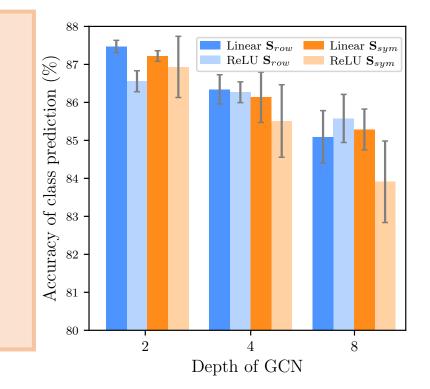
Graph Convolution Network

$$F(S,X) = S \sigma \left(\cdots (S \sigma (SXW_1) W_2) \cdots \right) W_d$$

$$S = S_{row} = D^{-1}A \text{ or } S_{sym} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}},$$

 $\sigma(.) = \text{Linear or ReLU},$ $W_i \in \mathbb{R}^{h \times h}$ are learnable weights

- 1. S_{row} better than S_{sym}
- 2. Performance \downarrow as depth 1
- 3. Linear as good as ReLU



Can we explain the above observations theoretically?

$$\Theta^{(d)} = \sum_{k=1}^{d+1} S\left(\dots S\left(S\left(\Sigma_k \odot \dot{E}_k\right) S^T \odot \dot{E}_{k+1}\right) S^T \odot \dots \odot \dot{E}_d\right) S^T$$

Random graph model characterized by $p,q \in [0,1]$ and $\pi = (\pi_1, ..., \pi_n) \in [0,1]^n$. Let $r = \frac{p-q}{q}$. p+q

Then for *K* latent classes, $C_i \in \{1, ..., K\}$, the population adjacency matrix $M = \mathbb{E}[A]$ is,

1			
	**	Ass	
	**	Cor	
	*	Mea	
		Cla	
	ι	.arg	

Mahalakshmi Sabanayagam, Pascal Esser, Debarghya Ghoshdastidar

Theoretical framework

Graph Neural Tangent Kernel as $h \to \infty$

 Σ_k : Covariance between nodes of layer k E_k, \dot{E}_k : Influence of non-linearity and its derivative

Degree Corrected Stochastic Block Model

$$M_{ij} = \begin{cases} p\pi_i\pi_j & \text{if } C_i = C_j \\ q\pi_i\pi_j & \text{if } C_i \neq C_j \end{cases}$$

Our Analysis Framework

sume A = Mmpute GNTK with A = Masure class separability of the kernel

ss sep. $\zeta(\Theta^{(d)}) = avg.$ in-class and out-of-class block difference

er $\zeta(\Theta^{(d)}) \rightarrow$ better preservation of the block structure

