Fast Adaptive Test-Time Defense with Robust Features

Anurag Singh^{*,1}, Mahalakshmi Sabanayagam^{*,2}, Krikamol Muandet¹, Debarghya Ghoshdastidar² ¹ CISPA–Helmholtz Center for Information Security, ² TU Munich

Objective

Given a trained model, how to improve robustness to adversarial attacks at *test*time?

Can we do it **efficiently** without additional computation costs?

Analysis: Generalized Additive Model

Let $x \in \mathbb{R}^d$, $y \in \{0,1\}^C$ and $y = h(x) + \epsilon$ where $\epsilon \in \mathbb{R}^C$, $\mathbb{E}[\epsilon_c] = 0$; $\mathbb{E}[\epsilon_c^2] \le \sigma^2$.

Trained model: Generalized Additive Model

 $h(x) = \beta^T \phi(x)$

Captures **Neural Networks!**

Let β_c, y_c be the *c*-th column of β, y and $\Sigma = \mathbb{E}_{x}[\phi(x)\phi(x)^{T}] = U\Lambda U^{T}.$

Feature Robustness $s_{\mathcal{D},\beta,c}(f) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left| \inf_{\substack{||\tilde{x}-x||_2 \leq \Delta}} y_c \beta_c^{\mathsf{T}} f(\tilde{x}) \right|$

Feature Information

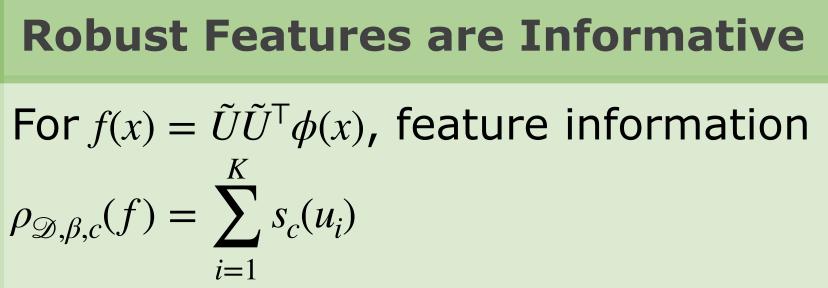
 $\rho_{\mathcal{D},\beta,c}(f) = \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[y_c\beta_c^{\mathsf{T}}f(x)\right]$

Check out the paper here!

Lower Bound on $s_{\mathcal{D},\beta,c}(f)$ Let ϕ be *L*-Lipschitz and for any $f(x) = M^T \phi(x)$ i.e. linear transformation of ϕ

 $S_{\mathcal{D},\beta,c}(f)$

Features with large $s_c(u_i)$ are Robust

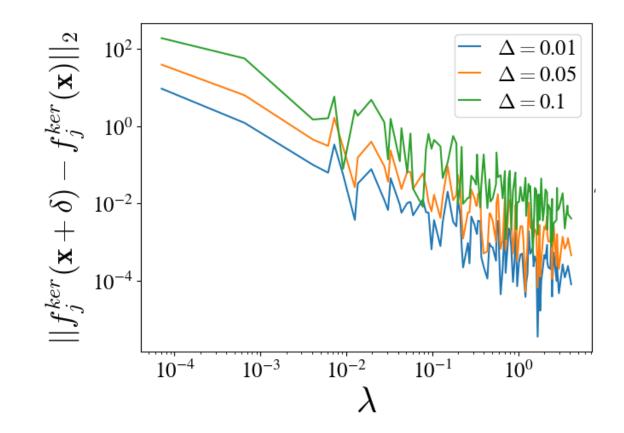


Theoretical Results

Goal: $h(x) = h_{robust}(x) + h_{nonrobust}(x)$

$$\geq \beta_c^{\mathsf{T}} \Sigma M \beta_c - L \Delta \|M\|_{op} \|\beta_c\|_{\mathscr{H}} \sqrt{\sigma^2 + \beta_c^{\mathsf{T}} \Sigma \beta_c}$$

For $M = PP^T$ where P is orthonormal basis, the lower bound on $s_{\mathcal{D},\beta,c}(f)$ is maximized when $f(x) = \tilde{U}\tilde{U}^{\top}\phi(x)$ where \tilde{U} is the K eigenvectors with $s_c(u_i) = \lambda_i (\beta_c^{\top} u_i)^2$ largest

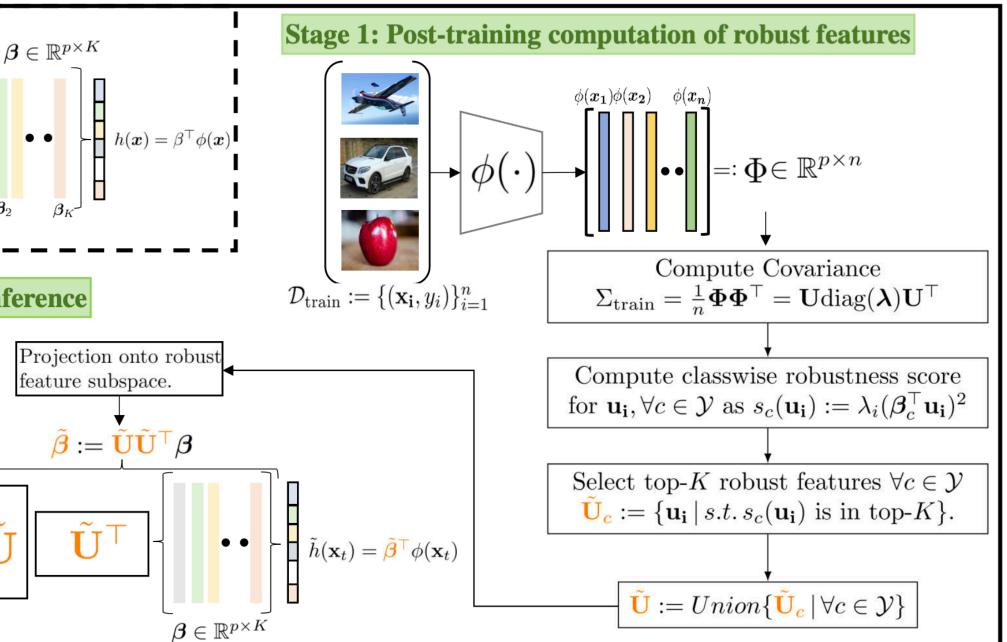


Robust Feature Inference (RFI) Training $\phi(oldsymbol{x})$ $\boldsymbol{eta} \in \mathbb{R}^{p imes K}$ • • $h(\boldsymbol{x}) = \beta^{\top} \phi(\boldsymbol{x})$ $\mathcal{D}_{\text{train}} := \{ (\mathbf{x}_i, y_i) \}_{i=1}^n$ **Stage 2: Robust Feature Inference** Projection onto robust eature subspace $\boldsymbol{\beta} := \mathbf{U}\mathbf{U}^{\top}\boldsymbol{\beta}$ $\phi(oldsymbol{x}_t)$ Test Input \boldsymbol{x}_t •• $\tilde{h}(\mathbf{x}_t) = \tilde{\boldsymbol{\beta}}^{\top} \phi(\mathbf{x}_t)$

	CIFAR-10 Training		Clean		ℓ_{c}	$\infty(\epsilon =$	$=\frac{8}{255})$	$\ell_2(\epsilon = 0.5)$		
			Method	+RF	RFI Me		+RFI	Method	+RFI	
	PGD		83.53	83.22	2 42	2.20	43.29	54.61	55.03	
	IAT		91.86	91.20	5 44	1.76	46.95	62.53	64.31	
	C&W	attack	85.11	84.97	7 40	0.01	42.56	55.02	56.79	
Base Method A		Adap	ptive Defense		Clean A		GD-CE	APGD-DLR		RobustBench
wideResiNet-54-10 SC		None		85.34		50.12	56.80		53.42	
		Anti-adv [8×]] 8	85.40		50.10	57.50		50.98
		SODEF 2 ×		[;	85.10		50.60	56.50		50.09
		RFI [1×]			85.30		51.62	58.97		54.86
			None		92.44		70.23	67.82		67.31
		Anti-adv [8×]			92.44		58.90	65.91		66.52
		SODEF 2 ×		Ī 9	92.01		57.53	65.08		64.20
		R	FI [1×]		92.34	-	70.36	67.9	0	67.50

References

- adversarial attacks. NeurIPS 2021



[1] Ilyas, Andrew, et al. Adversarial examples are not bugs, they are features. NeurIPS 2019 [2] Rice, Leslie, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. ICML 2020 [3] Wang, Zekai, et al. Better diffusion models further improve adversarial training. ICML 2023 [4] Alfarra, Motasem, et al. Combating adversaries with anti-adversaries. AAAI 2022 [5] Kang, Qiyu, et al. Stable neural ode with lyapunov-stable equilibrium points for defending against